
P a g e | 1

v 1.1

By Andy and Christopher, aka Andysks and ColorsFade.

P a g e | 2

About this Guide p3

Getting Started p4

Spawn Waypoints p4

Initializing Companions p4

Spawning Companions p6

Adding & Removing Companions p7

Adding a Companion p8

Removing a Companion p10

Managing Hangouts p11

Put Companions In Place p12

Handling Multiple Hangouts p14

Traveling Across Modules p15

Roster GUI p16

Roster GUI Functions p19

Removing a Companion: Part 2 p21

Limiting Companions to Specific Hangouts p24

Conclusion p25

P a g e | 3

My name is Andy, and even though I document this, all work belongs to

ColorsFade. I only wanted a companion system like in the OC, but being not so

good in scripting, he helped me since he uses the same system. I chose to

document this because knowledge is still fresh on the matter, and maybe

other people will have the same wishes as me :).

-Andy

There is a lot of legacy code and unused scripts in the NWN2 engine. It took

me hours to figure out which functions to call, when to call them, and which

functions to ignore. My hope is, with this guide, others will save precious time.

-Christopher

The Companion Management System that is native to the OC is primarily

contained in a script library called ginc_companion. There are several

tasks that must be accomplished in order to correctly manage your

companions through this system:

 Initializing Companions

 Setting Spawn Waypoints

 Setting Hangout Waypoints (where companions go when you dismiss

them)

 Spawning Companions

 Dismissing Companions from the party

 Moving Hangouts

 Preserving Companion state while loading new Modules

 Using the Roster GUI

You will need to write new scripts to perform custom logic for your own

companions. It is recommended that you have a basic working knowledge

of scripting before attempting to implement this system.

P a g e | 4

I recommend creating your own script library for all the functions you’re

going to want to write to manage your companions. These are simple

functions and I will provide examples in this guide. I recommend naming

your script something like d_ginc_party. The “ginc” lets us know that it’s a

global include file, and the “d_” prefix ensures it won’t overwrite other

“ginc” scripts.

The first thing you need to do is lay down spawn waypoints for your

companions. Each companion should have one and only one spawn

waypoint in the entire campaign. Spawn waypoints are named

“spawn_companiontag”. The “spawn_” portion must be lowercase or these

waypoints will not work.

Example: If you have a companion named Adoward, and that companion’s

tag is “adoward”, then their spawn waypoint would be named

“spawn_adoward”.

Your companions must be Initialized the first time your module loads. This

is a one-time event and needs to happen in the k_mod_load file. The easiest

way to do this is to copy the k_mod_load file and rename it, because we’re

going to change it, and you never want to change the default game files.

I renamed my copy to dk_mod_load. That new dk_mod_load file now needs

to be associated with all of your modules in the OnModuleLoad event.

A little more than halfway down the script there is a section where code

runs one time. The beginning looks like this:

if (GetGlobalInt(VAR_CAMPAIGN_SETUP_FLAG) == FALSE)

// Code goes here

P a g e | 5

What we want to do here is call a function to Initialize all of our

companions. This is a simple, two-step process:

1. Write the function in our d_ginc_party library

2. Call the function in our dk_mod_load script

Remember to add a reference to ginc_companion in your d_ginc_party

library:

#include "ginc_companion"

Now add the function to d_ginc_party. We’re going to use the method

InitializeCompanion(string sRosterName, string sTag, string sResRef) from

ginc_companion on each companion in our module/campaign:

void InitializeCompanions()
{
 InitializeCompanion("wurdy","wurdy","wurdy");
 InitializeCompanion("kayne","kayne","kayne");
 InitializeCompanion("celeste","celeste","celeste");
 InitializeCompanion("doxie","doxie","doxie");
 // More lines for however many companions you have
}

The next thing we need to do is call this function, InitializeCompanions(), in

the dk_mod_load script, at the proper point. Make sure to include

d_ginc_party library in the dk_mod_load script:

// Only setup once for entire campaign

if (GetGlobalInt(VAR_CAMPAIGN_SETUP_FLAG) == FALSE)

{

 SetGlobalInt(VAR_CAMPAIGN_SETUP_FLAG, TRUE);

 // Setup all Companions

 InitializeCompanions();

Calling our function here ensures that it only gets called once when the

campaign/module first loads. At this point, our companions are initialized

and we’re ready to spawn them at their spawn waypoints.

P a g e | 6

According to documentation in the ginc_companion library, companions

should never be placed in an area. They should only be spawned. More

specifically, they should be spawned with the method:

SpawnNonPartyRosterMemberAtHangout("companiontag");

This is the ONLY method that should ever be called to spawn a companion.

Note: You may be thinking right now, “But I haven’t placed any hangouts yet.

How will the companion spawn?” That is part of what the

InitializeCompanion() method does. It sets their current hangout waypoint to

be the waypoint labeled “spawn_companiontag”. Later on, the hangout will be

changed to something other than the spawn waypoint.

Spawning companions properly means using an OnClientEnter script for

the area where the companion should first be encountered. I like to name

my scripts “client_enter_areatag”. So, for example, I want to spawn my

Cleric companion, Celeste, in the forest_ruins area. I will create a script

called client_enter_forest_ruins.

Inside that script I will write the following code:

int bSpawned = GetLocalInt(OBJECT_SELF, "SPAWNED");
if(!bSpawned)

{

 // Spawn Celeste

 SpawnNonPartyRosterMemberAtHangout("celeste");

SetLocalInt(OBJECT_SELF, “SPAWNED”, TRUE);

}

What this code does is check a variable on the area to determine if the

spawn has happened (this prevents our companion from being spawned

more than once). If the area has not been spawned, then we spawn our

companion at their hangout. Since our companion has been initialized, that

means they will spawn at a waypoint named “spawn_celeste”.

P a g e | 7

Now that our companion is spawned, we need to provide a way to add or

remove the companion from our party. When the PC initially meets the

companion, this should be done through a dialog. Later on, we’ll be able to

change our party via the Roster GUI. For now, we’ll discuss how to add a

companion to our party.

P a g e | 8

There are several function calls that need to be made in order to add a

companion to your party. It is my suggestion that you wrap these calls up

into a single method and put that method in your d_ginc_party library.

Here’s my function, called AddCompanionToParty(). This is the ONLY

function I use to add companions to the party.

///

// AddCompanionToParty()
// Our one and only one method for adding a companion to the party.

///

void AddCompanionToParty(string sCompanionTag)

{

 ///

 // Make the companion visible on the Roster GUI

 ///

 SetIsRosterMemberCampaignNPC(sCompanionTag, 0);

 ///

 // Make the companion selectable on the Roster GUI

 // FROM: ga_roster_selectable

 ///

 SetIsRosterMemberSelectable(sCompanionTag, 1);

 ///

 // Add the companion to the party

 //FROM: ga_roster_party_add

 ///

 object oPC = GetFirstPC();

 AddRosterMemberToParty(sCompanionTag, oPC);

 ///

 // Just in case we forgot to set this, when we add a

 // companion to our party, we've met them.

 ///

 SetLocalInt(oPC, "met_" + sCompanionTag, TRUE);

 ///

 // Set the companion's XP equal to that of the PC

 ///

 object oCompanion = GetObjectByTag(sCompanionTag);

 int nXP = GetPCAverageXP();

 SetXP(oCompanion, nXP);

 ForceRest(oCompanion);

}

P a g e | 9

In order to use AddCompanionToParty() in a dialog node, we need to call it

from a script. I named my script ga_dk_add_companion(). This is the entire

contents of that script:

//

// Adds a companion to the party

//

#include "d_party"

void main(string sCompanionTag)

{

 AddCompanionToParty(sCompanionTag);

}

This allows us to call this function from a conversation node as an action:

This will immediately add the companion to your party and grant them XP

to match the player character. You may notice several function calls in the

method listed above. I will detail those methods and their purpose later in

this document.

P a g e | 10

There should only be one way to remove them from your party. This

eliminates bugs and glitches that can occur if you attempt to use other

methods. Via a conversation, this one method is called

ga_rm_go_to_hangout.

It is important that this be the ONLY method you use to remove party

members! This method will change the companion’s hangout waypoint

from spawn_companionname to hangout_companionname. This is crucial,

because your hangout spot for the companion is probably not the same as

their spawn location.

Used in a conversation, it looks like this:

Note: If you need to remove a companion from your party without using

dialog, I recommend copying the contents of the ga_rm_go_to_hangout

script into your d_ginc_party library and wrapping it in a function call. This

will allow you to use it in a non-dialog script. I will not go into details about

how to accomplish that task, however, as it is a basic scripting technique

and beyond the scope of this tutorial.

Note: There is a caveat to removing a companion, which I discuss on p21.

P a g e | 11

When you dismiss a companion from your party with ga_rm_go_to_hangout,

one of two things will happen:

1) If you are in the same physical area as the default hangout waypoint,

the companion will leave your party and walk to the hangout. They

will remain at the hangout until you usher them back into your party

or you unload the module. Don’t worry! There is a safe way to unload

the module and ensure all non-party companions are saved properly.

We’ll get to it later.

2) If you are NOT in the same physical area as the default hangout

waypoint (most likely the case) then the companion will leave your

party and de-spawn. The current state of the companion will be saved

out of the game.

Which means your companion is not really at their hangout. We have to

spawn them at their hangout when we get there.

 So, for example, let’s say we met our trusty cleric, Celeste, in the

FOREST_RUINS area. That was where her spawn_celeste waypoint was

located. However, her default hangout is in the INN, back in town, in

another module. How do we get her there?

We have to re-spawn her.

Once again we have to make use of an OnClientEnter script and a couple of

custom functions.

P a g e | 12

The script functions I am copying here are essentially the same ones that

the OC uses in the Sunken Flagon Inn. These methods should be added to

your d_ginc_party library:

//

// Puts non-party companions at their hangout spots.

// This should only be used in an area where we have set the hangouts,

// like an inn or stronghold. To be called in the OnClientEnter

// script slot.

//

void PutCompanionsInPlace()

{

 PutCompanionInPlace("wurdy");

 PutCompanionInPlace("kayne");

 PutCompanionInPlace("celeste");

 PutCompanionInPlace("doxie");

 // More for however many companions you have

}

int GetHasMetCompanion(string sCompanionTag)

{

 object oPC = GetFirstPC();

 int bHasMet = GetLocalInt(oPC, "met_" + sCompanionTag);

 return bHasMet;

}

P a g e | 13

//

// Puts a non-party companion at their hangout.

// Should only be called by PutCompanionsInPlace()

//

void PutCompanionInPlace(string sCompanionTag)

{

 object oPC = GetFirstPC();

 int bMetCompanion = GetHasMetCompanion(sCompanionTag);

 // If we haven't met the companion before, exit.

 if(!bMetCompanion)

 {

 return;

 }

 // If the companion isn't already in our party, then place them at

 // their hangout waypoint. There should only be one of these per module!

 object oCompanion = GetObjectByTag(sCompanionTag);

 if(!GetIsObjectInParty(oCompanion))

 {

 SpawnNonPartyRosterMemberAtHangout(sCompanionTag);

 }

}

Now that you have these methods in d_ginc_party, you can use them in an

OnClientEnter script. Suppose we have a client_enter_inn script. All we need

to do is call this:

#include "d_party"

void main()

{

 ///

 // Companions

 // This is the first "hangout" in the game, so spawn any

 // companions we've encountered, that are not already in the

 // party, at their hangout waypoints.

 ///

 PutCompanionsInPlace();

Our function, PutCompanionInPlace, takes care of the logic for us. It checks

to see if we’ve met the companion or not (we don’t want to spawn any

companions we haven’t met yet). It also checks to see if the companion is in

our party, and if they are not, it spawns them at their waypoint.

P a g e | 14

During the course of your campaign, you may want to provide multiple

hangouts for the companions. The OC does this, since you can find all your

non-party companions at either the Sunken Flagon, or Crossroad Keep.

In order to accomplish this, you need to change the hangouts for all the

companions when you enter a hangout area.

The simplest way to do this is via the OnClientEnter script for the hangout

area, and by using a method provided by the ginc_companion library:

SetHangOutSpot(string sRMRosterName, string sHangOutWPTag)

With this method, you can easily change the hangout waypoints for each

companion.

As an example, let’s say I have two hangouts for my companions: the inn,

and the stronghold that the player has acquired.

My hangout waypoints at the inn might be labeled as such:

 hangout_inn_wurdy

 hangout_inn_celeste

My hangout waypoints at the stronghold might be labeled as:

 hangout_stronghold_wurdy

 hangout_stronghold_celeste

In the client_enter_inn script, I would then need to add the following:

///
// Companions

// This is the first "hangout" in the game, so spawn any

// companions we've encountered, that are not already in the

// party, at their hangout waypoints.

//

SetHangOutSpot("wurdy","hangout_inn_wurdy");

SetHangOutSpot("celeste", "hangout_inn_celeste");

SetHangOutSpot("kayne", "hangout_inn_kayne");

SetHangOutSpot("doxie", "hangout_inn_doxie");

PutCompanionsInPlace();

You can see here, we’ve made sure to adjust the hangout spots before

calling PutCompanionsInPlace().

P a g e | 15

As long as you explicitly set the hangout waypoint with SetHangOutSpot()

prior to calling PutCompanionsInPlace(), your non-party companions will

always spawn in any hangout you enter. This allows you to have multiple

hangouts.

There is one caveat in all of this: cross-module travel.

If you have built modules before then you know that in order to load an

area from another module you need to call LoadModule(). However, if you

are using the ginc_companion system, you need to change that call.

Whenever you want to load a new module, you need to call

SaveRosterLoadModule() instead.

What this method does is de-spawn ALL non-party roster members before

calling LoadModule itself. This is essential, so that your companions get

saved out of the game properly, and don’t get lost or have their state

messed up.

P a g e | 16

Now that we know how to add & remove companions to our party via the

dialog operations, let’s focus our attention on the Roster GUI:

The Roster GUI allows us a fast and graphical way to manage our party.

However, there are some caveats to its use.

The first thing to understand is that the Roster GUI will de-spawn all non-

party companions, and save them out of the game, as soon as the player

chooses the “Accept Party” button. This is why the Roster GUI must be used

at the moment when the player is leaving an area.

If you recall, it is used in the OC on the door of the Sunken Flagon, as the

player is exiting the building, and on the World Map Transition outside

Crossroad Keep.

P a g e | 17

Using the Roster GUI on a door, or other object, like a World Map

Transition, means you must replace the default scripts on the door/map

with custom scripts, so that you can present the Roster GUI to the user

instead of performing the default action (such as a door transition).

The default action of the object (door/map transition) is then performed via

a callback script when the Roster GUI closes. Here is an example:

void main()

{

 object oPC = GetFirstPC();

 // The callback script for ShowPartySelect needs this data.

 SetLocalString(oPC, "DOOR_TAG", GetTag(OBJECT_SELF));

 // Kayne is the 2nd companion you meet, and his meeting is unavoidable.

 if(GetHasMetCompanion("kayne"))

 {

 ShowPartySelect(oPC, TRUE, "d_roster_door_exit", TRUE);

 }

 else

 {

 ClearAllActions(TRUE);

 AssignCommand(OBJECT_SELF, ActionCloseDoor(OBJECT_SELF));

 DelayCommand(0.1f, JumpParty());

 }

}

This script is used on a door. The first thing it does is get the TAG of the

door and assign it to the DOOR_TAG variable on the PC. This is so that the

callback script, d_roster_door_exit, will know which door transition to

perform once the Roster GUI is closed.

The second thing this script does is check to see if a particular companion

(Kayne) has been met yet. This is because it doesn’t make a lot of sense to

show the Roster GUI until the player has met more than one companion. If

Kayne has been met, then the player has encountered more than one

companion, and we should show the Roster GUI. This is achieved with the

following line of code:

ShowPartySelect(oPC, TRUE, “d_roster_door_exit”, TRUE);

This tells the game to show the Roster GUI, and to perform the callback

script, “d_roster_door_exit”, when the Roster GUI Closes.

P a g e | 18

In the d_roster_door_exit script we will check for the DOOR_TAG variable on

the PC and transition to the appropriate waypoint.

The remainder of the script is what happens if we’re NOT supposed to show

the Roster GUI. In that case, we just want to perform the transition to the

waypoint. I am not going to show the JumpParty() function because it is

simply a party jump to a specific waypoint.

P a g e | 19

There are two additional functions that are important for the Roster GUI.

You may have noticed these function names in our earlier method,

AddCompanionToParty:

ISRosterMemberCampaign

IsRostermemberSelectable

SetIsRosterMemberCampaignNPC

This function allows a companion to be visible or hidden on the Roster GUI.

When we call InitializeCompanion(), this flag gets set to TRUE, which means

the companion will NOT be visible on the Roster GUI. Since all companions

get initialized at the beginning of the game, that means none of them are

initially visible on the Roster GUI. This is as it should be; we don’t want the

player having access to companions via the Roster GUI before the player

has actually met them in the story.

However, once we meet the companion, we need to toggle this flag to

FALSE, so that the companion becomes available on the Roster GUI. We

automatically make this call when we do the AddCompanionToParty call,

but what if we decided to NOT take the companion into our party when we

initially meet them? (Grobnar, anyone?) Then we need to toggle the flag

there as well. Fortunately, there is a simple script we can call during a

conversation, called ga_roster_campaignnpc, to do the job for us.

This should be called with a FALSE value to ensure the companion shows

up .

ga_roster_campaignnpc(“grobnar”, FALSE);

P a g e | 20

IsRosterMemberSelectable

This is another function that affects companions in the Roster GUI. This

function determines if a companion is selectable in the Roster GUI.

By setting this value to TRUE, the companion may be selected in the Roster

GUI and then added/removed from the party. If this value is set to FALSE,

the companion’s name will show up in the Roster GUI (if

SetIsRosterMemberCampaignNPC has been set to FALSE), but they will be

greyed out and unavailable for selection. This is what happens with

Shandra in the OC. She shows up in the Roster GUI, but you cannot add or

remove her from the party via the Roster GUI.

For conversations, the script ga_roster_selectable allows us to toggle this

value.

P a g e | 21

So, remember on page 10 when I showed you the ga_rm_go_to_hangout

script, and said it is the one-and-only-one way you should remove

companions?

Well, there is a caveat to that: the ga_rm_go_to_hangout script does NOT set

the companion’s IsCampaignNPC flag to FALSE, and it does not set their

IsRosterMemberSelectable to TRUE. Why does this matter? Let me explain a

specific scenario:

You meet a companion on the road for the first time and a dialog initiates.

At the end of the dialog you elect NOT to take the companion into your

party. Your dialog calls ga_rm_go_to_hangout and the companion leaves.

Since they were never added to your party, their IsCampaignNPC flag never

gets turned to FALSE and their IsRosterMemberSelectable flag never gets

set to TRUE. This companion will not show up in the Roster GUI. You will

still meet them at their hangout, and if you have the proper dialog support

you can add them to your party through dialog, however, they will not

appear in the Roster GUI.

There are two solutions to this problem.

The first solution involves the use of two additional ga_ scripts in your

conversation. You need to call the following two scripts prior to calling

ga_rm_go_to_hangout:

 ga_roster_campaignnpc(“companiontag”, FALSE)

 ga_roster_selectable(“companiontag”, TRUE)

This is a totally viable solution and will ensure that your companion is

visible and selectable in the Roster GUI.

However, I prefer to keep things simple when using scripts in

conversations, and the simplest thing to do is wrap all three scripts into

one. I dub this script ga_go_to_hangout:

P a g e | 22

/**

REPLACEMENT script for ga_rm_go_to_hangout

This allows us to use ONE ga_ script call in a conversation, instead

of three.

1) Sends a companion to their hangout.

2) Marks the companion as NOT being a campaign NPC so they show up in

 the Roster GUI

3) Marks them as Roster Selectable so they can be manipulated in

 the Roster GUI

***/

#include "ginc_companion"

int IsHangoutSpawnOrBlank(string sRosterName);

void SetStandardHangout(string sRosterName);

void main(string sRosterName)

{

 SetIsRosterMemberCampaignNPC(sRosterName, FALSE);

 SetIsRosterMemberSelectable(sRosterName, TRUE);

 if (sRosterName == "")
 {

 object oSelf = OBJECT_SELF;

 string sRosterName = GetRosterNameFromObject(oSelf);

 if (sRosterName == "")

 {

 PrettyError("ga_rm_go_to_hangout failed - couldn't get Roster Name

for " + GetName(oSelf));

 return;

 }

 }

 // change to default hangout spot if using the standard spawn or if not set

 if (IsHangoutSpawnOrBlank(sRosterName))

 SetStandardHangout(sRosterName);

 GoToHangOutSpot(sRosterName);

}

int IsHangoutSpawnOrBlank(string sRosterName)

{

 int nRet = FALSE;

 string sHangoutSpot = GetHangOutSpot(sRosterName);

 string sStandardSpawnTag = "spawn_" + sRosterName;

P a g e | 23

 if ((sHangoutSpot == "") || (sHangoutSpot == sStandardSpawnTag))

 nRet = TRUE;

 return (nRet);

}

// the standard hangout spot is "hangout_<roster name>"

void SetStandardHangout(string sRosterName)

{

 string sStandardHangoutTag = "hangout_" + sRosterName;

 SetHangOutSpot(sRosterName, sStandardHangoutTag);

}

This script, as you can see, calls SetIsRosterMemberCampaignNPC() and

SetIsRosterMemberSelectable() at the beginning, thus bypassing the need

to set those up as separate Actions on a dialog node. The rest of the script is

a direct copy of the ga_rm_go_to_hangout script.

This script should be your one-and-only-one way to remove a companion

(or send them away in that initial conversation).

P a g e | 24

This question was raised on the message boards, so I’ll address is here.

This tutorial has given no consideration to limiting companions in a certain

hangout. It assumes you want to spawn all your “met”/discovered

companions in a hangout. However, you can easily limit the companions

that spawn in a hangout.

In the Area’s OnClientEnter script, instead of calling

PutCompanionsInPlace(), simply call the individual

PutCompanionInPlace(“companiontag”) methods.

Example:

Suppose we have companions named: Wurdy, Doxie, Kayne, and Celeste.

Kayne being a paladin and Celeste being a cleric, we also want them to

spawn at a nearby temple when we arrive. We don’t want any of our other

companions to spawn there.

In our client_enter_temple script, we would simply put this:

SetHangOutSpot("kayne", "hangout_temple_kayne");

SetHangOutSpot("doxie", "hangout_temple_celeste");

PutCompanionInPlace(“kayne”);

PutCompanionInPlace(“celeste”);

Notice we do not use the PutCompanionsInPlace method; we don’t want all

the companions to show up, just these two. And notice that we first adjust

their hangout spots to this area, the temple, prior to calling this method.

Using this method, you can have any number of companions show up in

whichever areas you desire.

P a g e | 25

The ginc_companion system may seem a little bit overwhelming at first, but

it is actually quite elegant, and once you get used to using it, it will make

your companion management much easier.

The one thing to understand is that there is basically only one way to

spawn companions, one way to add them to your group, and one way

remove them from your group. Stick to those singular methods and you’ll

avoid issues.

Also be aware of two other things:

1. When you begin a dialog with a companion for the very first time, you

should call ga_local_int(“met_companiontag”, TRUE, $PC) to set the

“met_” variable. This variable automatically gets set if you ADD the

companion to your party, but otherwise it does not. If you decline to

accept a companion into your party when you first meet them, they

will fail to show up in their hangouts if you haven’t set this variable. I

make sure I set this variable on the very first line of the conversation

when I first meet the companion.

2. Make sure you are calling SetIsRosterMemberCampaignNPC and

IsRosterMemberSelectable at the appropriate times if you plan on

using the Roster GUI, and especially if you plan on “forcing” a

companion into the party. Forced companions should have their

SetIsRosterMemberCampaignNPC = FALSE, so they show up in the

Roster GUI, but they should have their

IsRosterMemberSelectable=FALSE as well, so they cannot be

removed from the party.

As always, if anyone has issues or needs help, I am happy to assist. You may

contact me at: cb.holmes@gmail.com.

